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OBJECTIVE
In locally advanced rectal cancer, trimodality therapy comprising chemoradiotherapy, total mesorectal 
excision, and chemotherapy (CT) are accepted as standard treatment. However, standard “one-size-fits-
all” therapy based on the TNM staging system may not be suitable for every patient. In cases with a good 
response, less invasive surgical treatments, such as sphincter-sparing local excision or the watch-and-
wait approach may be more appropriate due to their lower recurrence rates. Therefore, it is very impor-
tant to predict these cases and plan treatment accordingly to ensure effective personalized treatment. 
Machine learning can successfully predict these cases. Aim: The aim of the study was to predict the 
response to neoadjuvant chemoradiotherapy with machine learning in locally advanced rectal cancer.

METHODS
The study included 125 rectal cancer cases who underwent neoadjuvant radiotherapy (RT)±CT between 
2010 and 2020, and the cases with a good response (grade 0-1) according to the Modified Ryan classifi-
cation were predicted using machine learning. A total of 26 variables were evaluated. After determining 
key variables, the dataset was divided into training/test sets at 80%/20%. Logistic regression, artificial 
neural network-multilayer perceptron classifier, XGBoost, support vector classification, random for-
est, and Gaussian Naive Bayes algorithms used to establish a prediction model. In the prediction of the 
group with a good response, 173 cases were created and evaluated with the synthetic minority oversam-
pling technique method.

RESULTS
Of the 125 cases, 15 had a complete response and 33 had a good response (Modified Ryan grades 0 and 
1). Six algorithms were tested in terms of their ability to predict a good response. Key variables for this 
prediction were found to be tumor localization, RT break time, age, gender, Karnofsky Performance 
Scale score, body mass index, pre- and post-treatment carcinoembryonic antigen levels, pre-treatment 
hemoglobin and neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio, radiological T and N 
stages, perineural and lymphatic invasion, tumor grade, radiological metastatic lymph node region, RT 
dose and technique, and presence and scheme of concurrent CT. The algorithm that showed the best 
performance was determined as logistic regression with an accuracy rate of 84% (CI: 0.69-0.98), sensi-
tivity of 83%, and specificity of 85%.
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can be created and the most suitable personalized treat-
ment for each patient can be determined at the initial 
stage of treatment.

In locally advanced rectal cancer, neoadjuvant 
CRT (n-CRT) improves local control, disease-free sur-
vival, and sphincter preservation rates.[6] However, 
after n-CRT, tumor regression patterns have a wide 
spectrum ranging from pathological complete re-
sponse (pCR) to disease progression. Although cases 
with pCR have the best survival and tumor control, 
pCR is achieved using n-CRT in only 10-30% of cases 
with locally advanced rectal cancer.[7] Some studies 
have shown that cases with pCR have low recurrence 
rates, and therefore less invasive alternative surgical 
treatments, such as sphincter-sparing local excision 
and the watch-and-wait approach may be more ap-
propriate for this patient population.[8-11] For this 
reason, identifying patients that are likely to achieve a 
complete or almost complete response is very impor-
tant to effectively personalize treatment, refer selected 
cases directly to surgery without waiting, and prevent 
unnecessary excessive treatment/toxicity.

This study aimed to predict response to n-CRT 
among 125 cases who underwent this treatment at the 
Department of Radiation Oncology of Eskisehir Os-
mangazi University Faculty of Medicine between 2010 
and 2020.

Materials and Methods

Patients Characteristics
Between 2010 and 2020, 127 rectal cancer cases who 
underwent n-CRT at the Department of Radiation 
Oncology of Eskisehir Osmangazi University were 
retrospectively evaluated. The study included patients 
with a histopathological diagnosis of rectal cancer, 
stage T3-4N0-2 or T1-4N1-2, and a Karnofsky Per-
formance Scale (KPS) score of ≥70. Staging was per-
formed with pelvic magnetic resonance imaging (MRI) 
and Positron emission tomography–computed tomog-
raphy. TNM staging was undertaken according to the 
American Joint Committee on Cancer staging system, 

Introduction

In locally advanced rectal cancer, trimodality therapy 
comprising chemoradiotherapy (CRT), total mesorec-
tal excision (TME), and chemotherapy (CT) are ac-
cepted as standard treatment.[1] Conventionally, the 
treatment algorithm is established according to the 
clinical and pathological TNM staging system.[1] 
However, standard “one-size-fits-all” therapy based on 
the TNM staging system may not be suitable for every 
patient. Treatment response and overall survival may 
not be similar in groups of patients receiving the same 
treatment at the same stage. Identifying patients at high 
risk of recurrence and disease-related death will also be 
valuable in guiding treatment. Therefore, in this com-
plex and heterogeneous disease group, it is important 
to evaluate the prognosis in a personalized manner and 
plan the treatment accordingly.

Artificial intelligence (AI) is a branch of computer 
science that tries to imitate human-like intelligence 
in machines using computer software and algorithms 
without direct human stimuli to perform certain tasks.
[2,3] Machine learning is a subunit of AI that utilizes 
data-driven algorithms that learn to imitate human be-
havior based on previous examples or experience.[4] 
Deep learning (DL) is an ML technique that uses deep 
neural networks (NNs) to create a model. The growth 
and sharing of data, increases in computing power, and 
developments in AI have initiated a transformation in 
oncology. Advances in radiation oncology and accu-
mulated big data of an increasing number of cases have 
resulted in the production of a significant amount of 
data. There are a number of individual differences that 
are responsible for each patient’s disease or associated 
with their response to treatment and clinical outcome. 
The concept of personalized treatment is based on 
determining and using these factors for each patient.
[5] The integration of such a large and heterogeneous 
amount of data and creation of accurate models may 
sometimes present with certain difficulties for the 
human brain and involve subjective individual differ-
ences. With machine learning, appropriate algorithms 

CONCLUSION
It is very important to predict the cases with a good response and plan treatment accordingly to ensure 
effective personalized treatment. Machine learning can successfully predict these cases.
Keywords: Artificial intelligence; machine learning; neoadjuvant chemoradiotherapy; prediction of treatment res-
ponse; rectal cancer.
Copyright © 2021, Turkish Society for Radiation Oncology



461Yakar et al.
Predicting Treatment Response with Machine Learning in Rectal Cancer

eighth edition.[12] After the diagnosis, all the patients 
were evaluated in the Oncology Council of ESOGUTF, 
and the treatment decision was made in a multidisci-
plinary manner.

Treatment Characteristics
Radiotherapy (RT) was applied to all cases as neoad-
juvant. Considering the patient’s KPS score, age, and 
comorbidities, an evaluation for concomitant CT was 
made and the CT scheme was determined. As con-
comitant CT, continuous 5-FU (5-Fluorouracil 225 
mg/m2) or capecitabine (825 mg/m2 5 days a week for 
5 weeks during RT) was used. During the treatment, 
the cases were evaluated at least once a week in the 
outpatient clinic based on complete blood count and 
blood biochemistry and examination findings. A close 
follow-up of toxicity and weight was undertaken.

All the patients were immobilized in the supine po-
sition, with their arms up. Computed tomography was 
performed with the Somatom Definition AS® Device 
with a 5 mm slice interval. Pelvic MRI fusion was used to 
contour gross tumor volume (GTVt). In the presence of 
pathological lymph nodes, MRI and positron emission 
tomography-computed tomography fusion were used 
for GTVn. For the clinical target volume (CTV)high, the 
area of margin was selected as 2 cm for GTVt and 0.5 cm 
for GTVn, and mesorectum and presacral areas were in-
cluded. CTVstandard was obtained by adding elective nodal 
areas to CTVhigh. Regional lymphatics included obtura-
tor, presacral, internal iliac, and external iliac lymph 
nodes (for T4 tumors only). The target volume (PTV) 
margin planned according to the RT technique was de-
termined as 0.5-1 cm. The bladder, small intestines, and 
femoral heads were contoured as organs at risk (OARs).

The RT dose was planned as 45-54 (1.8-2 Gy/day). 
RT was applied with the Varian Trilogy®/TrueBeam®/
Elekta Precise® device accompanied by three-dimen-
sional (3D) conformal RT and volumetric modulated 
arc therapy (VMAT). 3D conformal RT was applied to 
73 cases and VMAT technique was applied to 52 cases.

Evaluation of Treatment Response
At 4 to 6 weeks after treatment, response to n-CRT was 
evaluated with pelvic MRI, surgery was planned 6 to 12 
weeks later. The modified Ryan classification was used 
for response evaluation after n-CRT.[13]

ML
In this study, for the evaluation of response to n-CRT, 
logistic regression, artificial NN (ANN)-multilayer 
perceptron (MLP) classifier, XGBoost, support vector 

classification (SVC), random forest (RF), and gaussian 
naive bayes (GNB) algorithms were used.

MLP is a feed-forward class of ANN. The term MLP 
is sometimes loosely used to refer to any feed-forward 
ANN and can also refer to specific networks consisting 
of more than one sensor layer (with threshold activa-
tion). Multilayer sensors are called “vanilla” NNs in the 
spoken language, especially when they have a single hid-
den layer.[14] MLP consists of at least three node layers: 
An input layer, a hidden layer, and an output layer.

XGBoost is an optimized distributed gradient 
boosting library designed as a highly efficient, flexible 
and portable tool. XGB provides parallel tree enhance-
ment (also known as GBDT and GBM) that quickly 
and accurately solves many data science problems. 
The same code runs in a large distributed environment 
(e.g., Hadoop, Sun Grid Engine, and Message Passing 
Interface) and can solve problems beyond billions of 
examples. The most important features of the algorithm 
are its high predictive power, its ability to prevent over-
learning and manage empty data, and perform these 
tasks in a quick manner.[15]

SVC involves clustering the data set according to 
some criteria to organize the data in a more meaningful 
way. There are many ways to achieve this goal. Clustering 
can proceed by performing grouping according to a cer-
tain parametric model or based on a measure of distance 
or similarity, as in hierarchical clustering. A natural way 
of setting cluster boundaries is the use of “valleys” in re-
gions where there is very little data in the data area; i.e., 
in the probability distribution of the data.[16]

RFC method has multiple estimation trees and 
combines each tree to depend on the randomly selected 
vector value equally distributed among all the trees in 
the forest. Thus, in RFC, a random θk vector indepen-
dent of the previous random vectors and distributed 
across all trees is selected, and each tree is grown using 
a training set and a random θk vector, resulting in an 
ensemble of trees.[17]

GNB classifier is one of the top 10 algorithms in 
data mining. GNB is a useful classifier widely used in 
many applications, such as text categorization, spam 
filtering, and data flow classification. Bayesian classi-
fiers operate based on the Bayes rule and probability 
theorems.[18] A density distribution is drawn for the 
Gauss model of each class. The line shows the decision 
limit corresponding to the curve where a new point has 
an equal probability of being part of each class.

Logistic regression model simply uses a logistic 
function to model a binary dependent variable, but it 
is fundamentally much more complex. In regression 
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duced analysis aligning too closely to a certain dataset 
(memorization), which leads to the inability to adapt 
to new data that are not included in this dataset, and 
to eliminate the possibility of this problem, a balanced 
dataset should be used.[22] In the synthetic minority 
oversampling technique (SMOTE),[23] the class type 
with an unbalanced data distribution is artificially 
replicated, and thus balancing is achieved. In the cur-
rent study, for the evaluation of cases with a complete 
response, the samples belonging to the minority class 
type was multiplied using SMOTE. The dataset was 
divided into training (80%) and test (20%) sets, with 
100 cases being included in the training group (26 with 
and 74 without good response) and 25 (7 with and 18 
without good response) in the test group. The training 
group was oversampled with SMOTE, resulting in 148 
cases, of which 74 did not have a good response and 74 
had a good response.

Statistical analysis was performed and ML algo-
rithms were run using Python software (Python Soft-
ware Foundation. Python Language Reference, version 
3.5. Available from http://www.python.org) and Scik-
it-Learn library. All analyses and operations were un-
dertaken on a computer with the specifications of Intel 
Core i7-9750 CPU 2.6 GHz 12MB Cache and 16GB 
2666 MHz DDR4 RAM memory running 64-bit Win-
dows 10 operating system.

Results

Patient, Tumor, and Treatment Characteristics
For the prediction of cases with a good response, 125 
cases were used and SMOTE was applied. The median 
age was 61 (min: 23, max: 85) years, and the male/fe-
male ratio was 86/39. Patient and tumor characteris-
tics are given in Table 1. The median RT dose was 50.4 
(min: 45, max: 54) Gy. The median RT break time was 
2 (min: 0, max: 18) days. Concomitant CT was per-
formed in 106 cases and adjuvant CT in 110 cases. 
Treatment characteristics are given in Table 2.

Treatment Response
The modified Ryan classification was used for response 
prediction, and the number of cases with grades 0, 1, 2, 
and 3 was 15 (12.0%), 18 (14.4%), 80 (64.0%), and 12 
(9.6%), respectively.

Results of ML
Of the 26 variables, ten were determined as important 
using the permutation-based feature selection method: 
Tumor localization, RT break time, age, gender, KPS 

analysis, logistic (or logit) regression estimates the pa-
rameters of a logistic model. This is a method of clas-
sifying the relationship between multiple independent 
variables and dependent variables. In logistic regres-
sion analysis, the probability of a dependent variable is 
estimated with two values. In addition, the variables in 
the model are continuous, which makes this technique 
favorable for use in classifying observations.[19]

A total of 26 variables were evaluated: Age, gender, 
KPS score, history of comorbidities, body mass in-
dex (BMI), tumor grade, radiological T, N, and TNM 
stages, radiological metastatic lymph node region, tu-
mor localization (cm), tumor localization (lower/mid-
dle/upper), pre-treatment carcinoembryonic antigen 
(CEA) level, post-treatment CEA level, pre-treatment 
hemoglobin, neutrophil-to-lymphocyte ratio (NLR) 
and platelet-to-lymphocyte ratio (PLR), RT dose (Gy), 
RT technique, RT break time, presence and scheme of 
concomitant CT, time from RT to surgery, presence of 
lymphatic, vascular, and perineural invasion. Key vari-
ables were selected by the permutation-based feature 
selection method, which is based on the evaluation of 
the significance of each feature separately. This tech-
nique measures changes in prediction quality (based 
on the coefficient of decrease in determination score) 
after processing in a single feature vector. The rate of 
decrease in the coefficient of determination shows how 
important a feature is.[20]

The dataset was divided into training and test sets 
at 80% and 20%, respectively. Models were created us-
ing the training set and verified using the test set. The 
optimal model was selected according to the receiver 
operating characteristic curves. Cross validation is 
a model validation technique that tests what result a 
statistical analysis will yield in an independent dataset. 
The main use of this technique is to predict the accu-
racy of a predictive system in practice. In a prediction 
problem, the model is usually trained with a “known 
dataset” (training set) and tested with an unknown 
dataset (verification or test set), which is also known as 
supervised learning. The purpose of this test is to mea-
sure the generalizability of the trained model to new 
data and identify problems of overfitting or selection 
bias.[21] In the current study, five-fold cross validation 
was performed.

The dataset contained 15 cases evaluated to have a 
complete response and 33 cases with a good response 
(modified Ryan classification grades 0 and 1). In an 
unbalanced dataset, the model predicts in favor of the 
group with a higher number of samples, which results 
in overfitting. In statistics, overfitting refers to a pro-
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accuracy rate of 84% (confidence interval: 0.69-0.98) 
and area under the curve (AUC) value of 0.84. After 
SMOTE was applied to the dataset of 125 cases, 148 
cases were used for training and 25 for testing. In the 
test stage, the logistic regression algorithm accurately 
predicted six of the seven cases with a good response, 
and 15 of the 18 cases without a good response. The 
AUC graph of the algorithms is given in Figure 1b. The 
accuracy rates of the algorithms are given in Table 3, 
and the confusion matrix of the logistic regression al-
gorithm is presented in Table 4.

Discussion

n-CRT followed by TME is currently the standard 
treatment for locally advanced rectal cancer. Follow-
ing n-CRT, approximately 10-30% of patients achieve 
pCR.[7] For these patients no longer having invasive 
cancer, the question is whether they need TME be-
cause this invasive surgical method is associated with 
significant complications and morbidity.[8,24] Several 
studies have shown that patients with pCR have low 
local recurrence rates, and thus less invasive, alterna-
tive surgical therapies, such as sphincter-sparing local 
excision or the watch-and-wait approach are gaining 
more popularity among these patients.[8] There is a 
need to confirm pCR by surgery, and if these cases can 
be predicted in advance, less aggressive surgery can be 
performed. Similarly, less invasive surgical methods 

score, BMI, pre- and post-treatment CEA levels, pre-
treatment hemoglobin, NLR and PLR values, radiolog-
ical T and N stages, perineural and lymphatic invasion, 
tumor grade, radiological metastatic lymph node area, 
RT dose and technique, and presence and scheme of 
concomitant CT. The feature importance graph is given 
in Figure 1a. The algorithm that showed the best per-
formance was determined as logistic regression with an 

Table 1 Patient and tumor characteristics

Characteristic Number of patients 
  (%)/(min-max)

Age 61 (23-85)
Gender
 Male 86 (68.8)
 Female 39 (31.2)
KPS score 90 (70-100)
BMI (kg/m2) 27(15-40)
Tumor grade
 Grad 1 12 (9.6)
 Grad 2 106 (84.8)
 Grad 3 7 (5.6)
Radiological T stage
 rT2 4 (3.2)
 rT3 105 (84.0)
 rT4 16 (12.8)
rN stage
 rN0 57 (45.6)
 rN1 53 (42.4)
 rN2 15 (12.0)
TNM stage
 IIA/IIB/IIC 45 (36.0)/4(3.2)/6 (4.8)
 IIIA/IIIB/IIIC 3 (2.4)/60 (48.0)/3 (2.4)
 IVA 4 (3.2)
Tumor localization
 Upper/middle/lower 16 (12.8)/38 (30.4)/84 (67.2)
Pre- /post-treatment CEA  4.0 (0.8-313.0)/2.6 (0.4-78.7)
NLR 5 (0.8-31)
PLR  303 (41-964)
Lymphatic invasion 
 Present/absent 17 (13.6)/108 (86.4)
Vascular invasion
 Present/absent 17 (13.6)/108 (86.4)
Perineural invasion
 Present/absent 27 (21.6)/98 (78.4)
Pathological tumor size (cm) 2 (0-6.5)
Lymph nodes removed during 14 (2-40) 
surgery, n
Metastatic lymph nodes removed 0 (0-12) 
during surgery, n

KPS: Karnofsky performance scale; BMI: Body mass index; r: Radiological; 
CEA: Carcinoembryonic antigen; NLR: Neutrophil-to-lymphocyte ratio; PLR: 
Platelet-to-lymphocyte ratio; TNM: Tumor, lymph node and metastasis staging

Table 2 Treatment characteristics

Characteristic Number of patients 
  (%)/(min-max)

RT dose (Gy) 50.4 (25-54)
RT break time (days) 2 (0-18)
Concomitant CT
 Present 106 (84.8)
 Absent 19 (15.2)
Concomitant CT scheme 
 Capecitabine 84 (66.1)
 Continuous 5-FU 22 (17.3)
Time from RT to surgery (days) 61 (27-70)
Resection
 R0 119 (95.2)
 R1 4 (3.2)
 R2 2 (1.6)
Adjuvant CT
 Present 110 (88.0)
 Absent 15 (12.0)

Gy: Gray; CT: Chemotherapy; 5-FU: 5-Fluorouracil; RT: Radiotherapy
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Fig. 1. Feature importance plot for the prediction of 
cases with a good treatment response (a), AUC 
graph of algorithms (b).

 CEA: Carcinoembryonic antigen; NLR: Neutrophil-to-
lymphocyte ratio; PLR: Platelet-to-lymphocyte ratio; BMI: 
Body mass index; RT: Radiotherapy; VMAT: Volumetric 
modulated arc therapy; KPS: Karnofsky performance scale; 
r: Radiological; CT: Chemotherapy; ROC: Receiver oper-
ating characteristic; ANN: Artificial neural network; SVC: 
Support vector classification; AUC: Area under curve.
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can be used in cases that have a good response to treat-
ment. This possible prediction can significantly reduce 
health-care costs in the treatment of rectal cancer.

With the early detection and prediction of their 
response to treatment and following a personalized 
treatment approach, patients can be divided into dif-
ferent prognostic groups. Of the patients with locally 
advanced rectal cancer that has undergone n-CRT and 
surgery, 45% will require permanent colostomy. Iden-
tifying those with a complete or good clinical response 
and good response before surgery will allow for the 
optimization of the surgical approach with “organ-s-
paring” procedures, resulting in a reduction in surgi-
cal morbidity. In addition, among patients diagnosed 
with locally advanced rectal cancer, the early detection 
of those with a poor response to n-CRT will offer the 
opportunity to directly move on to surgery, thus avoid-
ing morbidities associated with n-CRT or intensified 
treatment regimen.[25]

In a study conducted with 696 patients with Stage 
I-III rectal cancer, Cai et al.[26] determined tumor size 
and pre-treatment CEA to be poor prognostic factors. 
Bacha et al.[27] evaluating 44 patients with locally ad-
vanced rectal cancer, accepted age as a factor affecting 
response to treatment. In the current study, the CEA 
level and age were accepted as key variables.

In a study conducted with 248 patients diagnosed 
with locally advanced rectal cancer who underwent 
n-CRT, Huang et al.[28] performed pCR prediction 
using patient and treatment characteristics. The au-
thors obtained the highest accuracy rate from the 
ANN algorithm at 88%. Key variables were accepted 
as post-treatment CEA value, time from RT to surgery, 
CT scheme, and clinical N and T stages. In the cur-
rent study, post-treatment CEA level, time from RT to 
surgery, CT scheme, radiological N and T stages were 
found to be key variables, and the best-performing al-
gorithm was determined as logistic regression with an 
accuracy rate of 84% in predicting a good response.

Imaging methods have also been used for pCR 
prediction.[19,29-32] Shayesteh et al.[25] included 
98 cases diagnosed with rectal cancer in their sam-
ple and performed MRI 1 week before CRT to extract 
radiomics such as density, shape, and tissue features. 
The authors used 53 cases for training and 45 for val-
idation. They used the SVM, BN, NN, and K nearest 
neighbor (KNN) algorithms both individually and 
together to evaluate their ability to predict response 
to n-CRT using AUC. When the algorithms were 
evaluated separately, the best result was obtained 
from the BN algorithm with the AUC value and ac-
curacy rate of 0.75 and 80.9%, respectively. When the 
algorithms (SVM, NN, BN, and KNN) were evalu-
ated together, the AUC and accuracy values were 0.97 
and 92.8%, respectively. The authors suggested that 
the prediction process could be improved when al-
gorithms were used as hybrid. In a study including 
95 patients diagnosed with T2-4N0-1 rectal cancer, 
radiomics were obtained from the computed tomog-
raphy images taken before CRT (1683 radiomic fea-
tures per case) together with clinical and treatment 
data, and response prediction was made with AI.[32] 
In the creation of prediction models, the deep NN 

Table 3 Algorithms used in the prediction of complete or good response

   Algorithm performance

Algorithm LR ANN XGB SVC RF GNB

Accuracy 0.84 0.72 0.60 0.72 0.72 0.68
ROC AUC 0.84 0.76 0.54 0.76 0.63 0.47
Precision 0.93 0.92 0.75 0.92 0.78 0.70
Sensitivity/recall 0.83 0.66 0.66 0.66 0.83 0.94
Specificity 0.85 0.85 0.42 0.85 0.42 0.30
Confidence interval 0.69-0.98 0.54-0.89 0.40-0.79 0.54-0.89 0.54-0.89 0.49-0.68

LR: Logistic regression; ANN: Artificial neural network; XGB: XGBoost; SVC: Support vector classification; RF: Random forest; GNB: Gaussian naive Bayes; ROC: 
Receiver operating characteristic; AUC: Area under the curve

Table 4 Confusion matrix of the best-performing 
algorithm

Logistic regression  Actual class

  Good  Good 
  response (+)  response (–)

Predicted class
 Good response (+) 6  1
 Good response (–) 3  15
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(DNN) and SVM algorithms were combined with 
radiomics while only TNM staging was added to lin-
ear regression (LR). pCR was achieved in a total of 
23 cases. The accuracy rates of the DNN, SVM, and 
LR algorithms were reported as 80.0%, 71.5%, and 
69.5%, respectively.

In the literature, there are very few studies that pre-
dict good response to n-CRT based on patient, tumor 
and treatment characteristics, and such prediction 
evaluations have mostly been undertaken using imag-
ing methods and radiomics. However, response rates 
are also related to patient and treatment characteris-
tics. In the current study, a prediction model was cre-
ated using not only patient and treatment but also tu-
mor characteristics. An accurate classification of cases 
with a good response could help determine less inva-
sive therapeutic strategies, such as sphincter-sparing 
surgery, mucosectomy, or the wait-watch approach. In 
addition, the prediction of cases that do not respond to 
n-CRT would allow for these patients to be referred to 
more effective treatments and thus significantly reduce 
unnecessary health expenses.

The limitations of the study are the small number 
of cases, the inclusion of metastatic (single liver metas-
tasis) cases and being a single-center study. Prediction 
software obtained in such studies has not yet entered 
into routine treatment use, and it is not clear which 
health authorities can give their ethical approval. The 
strengths of the study are the inclusion of patient, tu-
mor, and treatment characteristics in the algorithm. In 
addition, this study is important in terms of forming 
the basis for the decisions to be taken about the patient 
in the next oncology councils. 

Conclusion

In recent years, the increasing interest in AI in all fields 
of science has also led to the development of innova-
tive tools in oncology. The development of prediction 
tools with a wide variety of variables and models help 
plan personalized treatments. Using such prediction 
models, rectal cancer groups that will respond well to 
n-CRT can be identified to use less invasive methods 
while surgical treatments can be applied to cases pre-
dicted to be unresponsive to n-CRT to improve their 
oncological outcomes.
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